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ABSTRACT

The Rosseland mean due to Compton scattering at temperatures ranging from k7 = 0.01mc2to kT =
0.35m¢? and for densities ranging from p = 102 gm/cm?® to p = 10° gm/cm? is calculated. In most of this
semidegenerate reglon Compton scattering dominates over electron conduction, bound-free transitions,
and free-free transitions. The results are compared with Sampson’s results in the non-degenerate case and
his estimates in the semidegenerate case. Upon comparison, his estimates are smaller than ours by
approximately 5-15 per cent in most cases.

INTRODUCTION

Early calculations of the opacity due to Compton scattering have used the Thompson
formula for the cross-section, which is valid only for a low temperature and a non-
degenerate gas, For stellar-structure studies at high temperatures (A7 ~ mc? or T ~
6 X 10°° K) and high densities which occur in advanced evolutionary phases, correc-
tions to the Thompson scattering cross-section and to the final state of the electron
become important. Sampson (1959) has obtained expressions for the electron-scattering
opacity in the non-degenerate relativistic region, taking into account the correction to
the Thompson cross-section at high temperatures. In this paper we shall calculate the
electron-scattering opacity in the semidegenerate region, in the domain in which the
electron opacity is dominant. This domain is shown in Figure 1.

THEORY OF RADIATION

For completeness, we shall present here a brief derivation of the theory of radiative
transfer, taking degeneracy into account. Our derivation is similar to that of Sampson
(1959) for the non-degenerate case.

With the assumption of local thermodynamic equilibrium the equation of radiative
transfer has the following form in the usual notation:

s VI(ws)=—p.w)[1 —exp(—tw/kT)I[I(v,s) —B»T)]

—_L/I;N(P)dP%l—[l—i—exp Esz ] %dgz(v,S,O,P)I(v,s)
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where I(»,s) is the intensity of radiation of frequency » traveling in the direction of the
unit vector s,B(»,T) the equilibrium radiation intensity given by

-1
B(,T) _%v_[ exp —%},— 1)] ; (@)
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and N(P), the electron distribution function given by
PZ
h3 1+exp[(E—u)/kT]
In equation (1) the subscript ““2” refers to the final states of the electron and the photon.
By principle of detailed balance, we obtain
E__—"_;i :l_l}dd v dvy

kT 8?272?17

N(P)dP = dPdQp. ®3)
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Fic. 1.—Temperature-density diagram. The shaded area shows the region under consideration and
vg stands for plasma frequency.

Substituting equation (4) into equation (1) we obtain
s VI(s)=—p)1 —exp(—lw/kT)II(r,s) —BuT)]

_AAN(P)dP§1—[1+eXp E2kT ]_lzdié(u,s,o,P)gl(v,s) .

h
x[1+55 S 105,5) | =T [ 145 S5 10,5) ( ) s
Assuming the solution to equation (5) to be
I(v,s) = B(»,T) — I(v)s-vB(»T)+ ..., ©)
we obtain
I(v) = {u(»)[1 — exp(—hv/kT)] + us(v)}™ n
where

i = o ymaefi- o ()]

i{_ 1 —exp(—hv/kT) _vzl(m)
X3 1T —exp( —huz/kT)[l Wi(v)

(8)

0]d92,

where § = scattering angle of the photon.
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In equation (8) we have already dropped those terms which vanish upon integration
over Q to obtain the radiation flux. We now use the following approximations

1 —exp(— w/kT)
1 —exp( — hve/ kT)

&221 . (10)

L(»)

Since the main contribution to the integrals comes from photons with sv >~ 4%T, and
(v is not very different from », the approximation (9) is very good. For Compton
scattering /(v) changes very slowly with the frequency ». For instance, at 2T = 0.05mc*
and n = +1, u,(hv = 4.125kT)/u,(hv = 3.208kT) = 0.957. Thus the error intro-
duced in replacmg {1 — val(v2) cos 8/[¥l(¥)]} by (1 — »z cos 8 »~) is of the order of a few
per cent.

With the above approximations, equation (8) is reduced to

_ 1 dcr/
w0 = f, N (P)dP|1 1+exp[(E2_M)/kT]§dQ2\ cosﬂ)d(lg a

Frank-Kamensetskii (1962) called (do/dQ2)(1 — »2 cos 8/v) the transport cross-section.
In the classical limit, v is equal to » and the differential cross-section is an even func-
tion of cos 6. Hence, upon integration over Qs, the contribution from v, cos 6/» will be
zero and the transport cross-section is equal to the scattering cross-section.
The electron distribution function is given by

2 P
B 1+exp[ (E—p)/kT]

In the degenerate region the contribution to the density function by the creation of
positrons is small, The correction due to positron creation will be shown to be small.

~1 (9

and

N(P)dP = dPdQp. (12)

CALCULATIONS
To facilitate computation we introduce the following non-dimensional variables

E = E/m — 1, T = kT/mc*,
uw= hv/kT, us = hvy/kT .

(13)

In terms of these variables equations (12) and (11) can be expressed as
2 (E?4+2E)2 (14 F)
N 1 4exp(E /T —

_ 2 e (E*+2E)"*(14F')
peCkTn) =55 fo o o o 1+ exp(E'/T — )

N(P)dP = dE'dQp (14)

and

(15)
1
1+exp(E’/T’+u——u2—n) dQ,

x[1- (1 ’2 os a) 494 pdE
where A, is the Compton wavelength = &/mc. In obtaining equation (15) we have
eliminated E; by means of the energy conservation equation E + kv = E; - hv,.

The direction of the incident electron is chosen as the positive z-axis. The direction of
the incident photon is chosen to lie in the x—z-plane and it makes an angle a with the
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g-axis. The direction of the final photon has the angular coordinates (a’,p) as shown in
Figure 2. In the coordinate system so chosen, we have

dSde = ded cos o', dQp = dQ, = 2wd cos a. (16)

Then equation (15) becomes

1 1 T
JukTyn) ==X [ aE [ dcosa’ [ d
K (uk )17) )\3 E’=0 cos a=—1 Cosa'/cosu'=—1 cosa ¢=0 ¢
a7
(E?+ 2E’)1/2(1+E'); [ (E' ) ( Ve COS 0)
1—{1 =t u—u,— 1—
><l-i—exp(E’/T’—-n) T exp T’+u e a9
The scattering angle 6 is easily shown to be given by
cos § = cos a cos o’ + sin a sin a' cos ¢ . (18)
z
A
P
v /!
a |
~ E
i
3 i Y
~ i
~ t
S
\\\‘l
X
F16. 2.—Coordinate system used in the calculation
By the conservation laws v, is related to » and the other variables through
vy 1—Bcosa
2 , (19)
v 1—pcosa+mw(l—cosb)/E
ie.,
Uy _ 1—Bcosa (20)

u 1—Bcosa +ul’"(1—cosf)/(1+E)"

We use a form of the differential cross-section given by Jauch and Rohlich (1955):

da_ (vz>
dQ. 272 (1—ﬂc05a)2’

(21)
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where 7, = classical radius of the electron and

v 1—Bcosa 1 —Bcosa’ v

Xz;;l—BCOSa’ 1—Bcosa v
(22)
mict m2ch 2
+[1+Ehv(1 —Bcosa) Ehs(1—pcos a')] )

Thus, substituting equations (18)~(22) into equation (17), we can compute u.(u, kT,
7). The Rosseland mean is given by

15 o 1 ule®
- . (23)
ACRT,m) 47r4f0 e (akTn) (1= "

We have neglected u, in the scattering-dominated region. In all, we have a fivefold
integration to do for each of the corresponding values of £T and 5. The computation
was done on an IBM 9094 computer.

TABLE 1

VALUES OF G(kT',n) FOR VARIOUS TEMPERATURES AND
DEGENERACY PARAMETERS 4

7
kT/ (mc?)
it —1 0 1 2 4
0 01 . 0 8294 0 7368 0 6112 0 4864 0 3094
03 S 6732 .6060 .5094 4076 2534
05 0 5967 .5699 .5189 .4410 3553 2217
15 3496 .3416 .3194 .2816 2322 1423
25 0 2542 .2529 .2389 .2135 1776 1066
0 35 . 0.2028 0.1923 0 1730 0 1443 0 0843

Defining G(kT,7) as the transport cross-section in units of the Thompson cross-section

gq, then the Rosseland mean is
1
A(kRT,n) =

NG (ET, )" @)

where N is the number of electrons given by equation (14). The opacity is k = (pA)~,
where (6o/V)~! is the Rosseland mean in the classical limit. Values of G(kT,n) are tabu-
lated in Table 1 for the corresponding values of 2T and 5. The values corresponding to
7 = —‘“o” were obtained from

G(T) = — 0.13887 + 4.9871(kT)~1/2 — 5.9479(kT)
(25)
— 2.362(kT)~3"2(for 20 keV < kT < 125 keV)

from Sampson (1959) for the non-degenerate case where k7T is measured in keV.
If the values of G(kT,n) at other kT and 5 are needed, the following polynomial of
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kT and 4 will fit fairly well for the region under consideration with an error of approxi-
mately 5 per cent,

kT BT
log. G(AT,n) = —0.3037 = 6.89757 -+ 8.80771 (1.} = 0.1587371
mc mec
(26)
R\ kT
+0.392553 21 1—0.014686 79— 0.451961(-=1) 1-0.0523759 -5 e,
mc mc mc

To facilitate application of the transport cross-section due to Compton scattering, we
list the number densities of the electron as given by equation (14) in Table 2. ‘

TABLE 2
VALUES OF N\3 AT VARIOUS VALUES OF £T° AND 7
7
kT/ (mc?)
—1 0 +1 +2 +14
0 01 0 01046 0 02448 0 05061 0 09077 0 2117
03 0 05650 0 1326 0 2755 0 4974 1183
.05 0 1264 0 2972 0 6195 1129 2727
.15 0 7847 1 865 3 963 7 442 19 25
25 1 983 4 754 10 25 19 69 53 45
035 3 804 9 180 20 03 39 14 110 2
DISCUSSION
We have so far neglected the positron contribution to Compton scattering. It can be
shown that at 7 = —1 and kT = 0.35mc? which are most favorable to pair creation in

the region under consideration, the ratio of the number density of electrons and positrons
to that of electrons is 1.027. At all other values of 5 and kT in Table 2 the ratio is less
than 1.005. While the correction to the number density arising from the presence of posi-
trons at g = —1 and kT = 0.35mc? is +2.7 per cent, the corresponding correction to
effective cross-section G(kT,n) should be much less than that since the latter is less
sensitive to the presence of positrons than is the number density N.

If our computation is repeated for n = —3, the results agree with Sampson’s (1959)
to within 2 per cent.

Sampson (1961) suggested that one estimate the effective degenerate cross-section by
multiplying his non-degenerate results by a factor

0T )=§ (E+1)(E*+ 2E)*dE 2
1 v [1+exp(E/T — )11 +exp(n—E/T)] -
Xg © (E+ 1)(E2—}-2E)1/2dE2—1
o [14exp(E/T'—19)] )

Upon comparison his estimates are smaller by approximately 5-15 per cent than ours in
most cases.

I would like to thank Professor Hong-yee Chiu for suggesting the problem and Dr.
Richard Stothers for discussions.
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